
AdaComm: Tracing Channel Dynamics for Reliable
Cross-Technology Communication

Weiguo Wang1, Xiaolong Zheng2, Yuan He1, Xiuzhen Guo1
1School of Software and BNRist, Tsinghua University

2School of Computer Science, Beijing University of Posts and Telecommunications
wwg18@mails.tsinghua.edu.cn, zhengxiaolong@bupt.edu.cn,

he@greenorbs.com, guoxz16@mails.tsinghua.edu.cn

Abstract—Cross-Technology Communication (CTC) is an
emerging technology to support direct communication between
wireless devices that follow different standards. In spite of
the many different proposals from the community to enable
CTC, the performance aspect of CTC is an equally important
problem but has seldom been studied before. We find this
problem is extremely challenging, due to the following reasons:
on one hand, a link for CTC is essentially different from a
conventional wireless link. The conventional link indicators like
RSSI (received signal strength indicator) and SNR (signal to noise
ratio) cannot be used to directly characterize a CTC link. On
the other hand, the indirect indicators like PER (packet error
rate), which is adopted by many existing CTC proposals, cannot
capture the short-term link behavior. As a result, the existing
CTC proposals fail to keep reliable performance under dynamic
channel conditions. In order to address the above challenge, we
in this paper propose AdaComm, a generic framework to achieve
self-adaptive CTC in dynamic channels. Instead of reactively
adjusting the CTC sender, AdaComm adopts online learning
mechanism to adaptively adjust the decoding model at the CTC
receiver. The self-adaptive decoding model automatically learns
the effective features directly from the raw received signals that
are embedded with the current channel state. With the lossless
channel information, AdaComm further adopts the fine tuning
and full training modes to cope with the continuous and abrupt
channel dynamics. We implement AdaComm and integrate it
with two existing CTC approaches that respectively employ
CSI (channel state information) and RSSI as the information
carrier. The evaluation results demonstrate that AdaComm can
significantly reduce the SER (symbol error rate) by 72.9% and
49.2%, respectively, compared with the existing approaches.

I. INTRODUCTION

The ever-developing Internet of Things (IoT) brings the
widespread deployments as well as the rich diversity of
wireless technologies [1]–[3]. To directly interconnect the
heterogeneous devices that follow different wireless technolo-
gies, Cross-Technology Communication (CTC) is proposed
to enable the direct communication between incompatible
devices without extra hardware.

Despite the tremendous advances, existing CTC approaches
usually focus on enabling the communication between incom-
patible technologies. How to maintain the reliable performance
in the intrinsically dynamic channels has not received enough
attention. To convey data, existing CTC techniques usually
explore the mutually accessible information carrier such as the
energy and timing of packet transmissions [4]–[7], the state
variations of overlapped channels [8], [9], and the originally

incompatible but similar signals [10]–[12]. Since most CTC
leverages the signal patterns rather than the underlying raw
signals to convey data, the CTC links significantly differ from
the links in traditional wireless communication. Traditional
link quality indicators such as RSSI or CSI used by WiFi to
learn the channel state cannot reflect the quality of a CTC
link. So far there is not a link quality indicator to accurately
describe the CTC’s channel state.

Without an accurate CTC link indicator to learn the current
channel state, to cope with channel dynamics is a fundamental
but challenging task for CTC. Most of the existing CTC
approaches adopt indirect indicators, e.g. Packet Error Rate
(PER), to detect the changes of channel state. When there
is a significant variation in the PER, the CTC approaches
may reactively control the sender’s encoding behavior, so
as to enhance the features of encoded signals received by
the receiver. For example, WiZig [6] extends the symbol
window length and enlarges the differences of adjacent en-
coded amplitudes to enhance the features of CTC symbols.
FreeBee [4] increases the number of beacon repetitions per
symbol in the noisy channel, thus improving the highest fold
sum. ZigFi [8] controls the transmission power to maintain
Signal-to-Interference-plus-Noise-Ratio (SINR) perceived by
the receiver so that the CSI of ZigFi symbols still satisfy the
decoding model.

The reactive adjustments of CTC against channel dynamics,
unfortunately, suffer performance degradation and even failure
in practice. First, the indirect indicators of channel state only
reflect the long-term average channel quality but are insensitive
to the short-time channel dynamics. Therefore, adjusting CTC
according to those indicators can only achieve sub-optimal
performance. Second, existing decoding methods usually adopt
the threshold or machine learning model as the pattern recog-
nition methods. But features such as the RSSI threshold and
CSI variation predefined by the feature-based decoding model
cannot accurately describe the channel dynamics. For example,
the PHY information such as CSI can be affected by both the
intentional CTC transmissions and the channel-related factors
like multipath. The predetermined statistical features are not
necessarily effective to cover all possible cases, due to the
uncertainty of channel dynamics.

In order to address the above problems, in this paper we
propose AdaComm, a general and lightweight online adaptive

CTC framework that automatically adjusts the decoding model
to maintain reliable communication performance in dynamic
channel conditions. Instead of enhancing the features of signals
from the sender, we propose a self-adapting decoding model
at the receiver side, which traces the channel state to improve
the decoding reliability. We directly use raw received data
as input and avoid the information loss caused by manual
feature extraction. Our model automatically extracts the ef-
fective features to distinguish between the intended impact of
CTC modulation and the channel dynamics. We also design
an online learning mechanism that leverages the correctly
decoded CTC data to update the decoding model without extra
cost of data collection, which is called fine tuning. With fine
tuning, AdaComm is able to cope with continuous changes of
the channel state. To deal with model failures caused by abrupt
channel changes, AdaComm integrates a full training mode
that retrains the decoding model with the newly collected
training sequences. To reduce the cost of data collection for
full training, we devise a data augmentation method to obtain
sufficient training data with only limited size of the training
sequence. The main contributions of this work are summarized
as follows.
• We propose AdaComm, a general online learning CTC

framework to maintain reliable performance in dynamic
channels. AdaComm integrates a lightweight decoding
model that takes the information of channel state into con-
sideration and automatically extracts decoding features.

• We design fine tuning and full training modes to cope
with continuous and abrupt channel changes. In fine
tuning, we use the correctly decoded CTC data to update
the decoding model. In full training, we propose a data
augmentation method to reduce the cost of collecting
online training data.

• We implement AdaComm on both CSI-based and RSSI-
based CTC and evaluate its performance in various en-
vironments. The experiment results show that AdaComm
can reduce the SER by 72.9% and 49.2% for CSI-based
and RSSI-based CTC, respectively.

The rest of this paper is organized as follows. We present
the related work in Section II. In Section III, we investigate
the performance of existing CTC in a dynamic environment
and analyze the causes of performance degradation. Section
IV presents the design of AdaComm. We evaluate the perfor-
mance of AdaComm in Section V and conclude our work in
Section VI.

II. RELATED WORK

Cross-Technology Communication (CTC) has been devel-
oping rapidly and applied for channel coordination among
heterogenous technologies [13], [14]. The common idea of
CTC is building the mutually accessible information carrier
with existing hardware to convey data. One of the most
common information carriers is the energy of packet trans-
missions. ESense [5] modulates symbols by packet lengths
and accomplishes CTC from WiFi to ZigBee. HoWiEs [15]
improves Esense by using combinations of WiFi packets.

Time 12:30(0) 12:45(1) 13:00(2) 13:15(3) 13:30(4) 13:45(5) 14:00(6) 14:15(7) 14:30(8) 14:45(9)
12:30(0) 0.913 0.611 0.544 0.755 0.429 0.587 0.543 0.507 0.551 0.474
12:45(1) 0.833 0.956 0.826 0.911 0.929 0.809 0.670 0.503 0.524 0.564
13:00(2) 0.854 0.942 0.930 0.770 0.790 0.901 0.937 0.720 0.604 0.568
13:15(3) 0.673 0.404 0.888 0.921 0.936 0.901 0.589 0.562 0.660 0.719
13:30(4) 0.753 0.611 0.946 0.923 0.960 0.717 0.584 0.541 0.668 0.761
13:45(5) 0.611 0.620 0.515 0.895 0.895 0.914 0.918 0.795 0.741 0.683
14:00(6) 0.630 0.607 0.548 0.869 0.607 0.710 0.956 0.904 0.825 0.793
14:15(7) 0.580 0.480 0.485 0.728 0.822 0.640 0.754 0.973 0.853 0.731
14:30(8) 0.642 0.750 0.546 0.705 0.610 0.640 0.928 0.856 0.921 0.678
14:45(9) 0.679 0.544 0.538 0.606 0.886 0.843 0.579 0.734 0.573 0.891

Validation Dataset

Tr
ai

ni
ng

 D
at

as
et

Fig. 1: Decoding accuracy in the dynamic environment.

GSense [16] embeds symbols into gaps between customized
packet preambles. B2W2 [17] mimics the DAFSK for com-
munication from BLE to WiFI. C-Morse [18] constructs the
radio energy patterns with Morse Coding. WiZig [6] improves
the throughput by using multiple amplitudes. FreeBee [4]
leverages the transmitting timing of beacon packets as the
information carrier. DCTC [19] utilizes the transmitting timing
of application packets to encode data. Another information
carrier is the channel state. ZigFi [8] uses the impacts of
ZigBee packets on Channel State Information (CSI) to convey
data. Recently, researchers utilize physical layer information
to achieve high-speed CTC. SymBee [9] creates distinguishing
phase patterns on WiFi receiver with special ZigBee pay-
load. WEBee [10] and BlueBee [11] emulate the signal of
another technology in the payload. XBee [20] utilizes bit
patterns to decode ZigBee packets at BLE. TiFi [21] utilizes
backscattered harmonic to achieve CTC between WiFi and
RFID. WIDE [12] emulates the phase shift of the receiver
directly to achieve digital emulation. Meanwhile, CTC has
many practical applications, such as channel coordination [22]
and time synchronization [23].

Despite the tremendous advances, existing CTC approaches
usually focus on enabling the communication between incom-
patible technologies. However, how to maintain the reliable
performance in the intrinsically dynamic channels has not
received enough attention. Existing methods only reactively
bear the channel dynamics and heuristically sacrifice perfor-
mance of throughput to lower the SER by retransmission [4],
[10], increasing symbol window length [6], [7], controlling
transmission power [8]. Different from existing methods, we
directly include the channel state into our decoding model and
exploit online learning to continuously adapt to the channel
dynamics.

III. MOTIVATION

In this section, we study the performance of existing CTC
techniques in dynamic environments and further investigate
the challenges that CTC encounters in dynamic environments.

Existing CTC methods usually use the threshold or the
machine learning model as the decoding model to decode
CTC symbols. Without losing generality, we investigate the
performance of ZigFi [8] (a CTC from ZigBee to WiFi) as the
example to show the impacts of dynamic environment on CTC.
The basic idea of ZigFi is using the presence and absence of
ZigBee packets to modulate the overlapped channel to transmit

0 1
Clean Channel CSI sample

0 1
3 4.5

Var = 0.0

0

Var = 1.44 Var = 2.66 Var = 1.56

3

-3

Person start
moving

 Noise Channel

Fig. 2: The illustration of feature invalidation when the
environment has low-frequency noise.

symbol 1 and 0. A WiFi receiver monitors the changes of
Channel State Information (CSI) to detect the existence of
ZigBee packet and then outputs the corresponding symbols
after decoding. To detect the impacts of ZigBee transmissions
on CSI, ZigFi defines two CSI features, variance and peak-to-
peak (i.g. maximum - minimum), and decides whether there
is ZigBee transmission by a binary SVM classifier.

We conduct experiments in an office on our campus during
working hours, to investigate the performance of ZigFi. We
collect CSI sequences during the presences and absences of
ZigBee packets and label them as symbol 1 and 0, respectively,
as the labeled training data. The CSI sampling frequency is set
to 2KHz and the collection of CSI sequence for each label lasts
for 30 seconds. We continuously construct 10 training datasets
at intervals of 15 minutes, and denote them as D0, D1, ..., D9

in time order.
For each training dataset Di, we train a decoding model

from scratch only using Di. Then we examine the performance
of each decoding model. The test results are shown in Fig.
1. Each cell A(i, j) denotes the decoding accuracy of the
model trained by dataset Di and tested on dataset Dj . When
we evaluate A(i, i), we leave 20% of dataset Di for testing.
From the results, we find that the decoding accuracy of all
A(i, i) is around 0.9, consistent with the reported results in
ZigFi. However, the accuracy usually suffers from different
degradations when testing the model on other slots (i 6= j),
and the accuracy can decrease by more than 50% in one hour.

The results demonstrate that channel dynamics can cause
significant performance degradation. The PHY information
like CSI is much sensitive to channel dynamics and can be
impacted by factors including multipath, scattering, fading,
and power decay, besides the ZigBee transmissions. Hence,
the original decoding model trained at a time will mismatch
the current distribution of CSI features. The outdated model
leads to performance degradation.

Besides, the inappropriate features can also result in per-
formance degradation. Most of existing methods empirically
predetermine a set of features, which may cause inaccuracy
to the decoding model in dynamic channel environments. As
shown in Fig. 2, the ZigBee transmissions fluctuate CSI in the
clean channel. Hence, variance of the CSI, as a statistical fea-
ture, is used in ZigFi to distinguish the presence and absence
of ZigBee transmissions. However, the channel dynamics can
also impact the CSI. According to our measurements, we
find that the human movements influence the multipath and

Packet

Online Learning

PHY Layer

Link Layer

CTC Decoding

Bits

CRC

Model
Decoding

Segmentation

Training Seq.
Preamble Detection

AdaComm Rx

Online Passive
Dataset Dp

Fine TuningFine Tuning

Params. Update
Data

Augmentation

Online Active
Dataset Da

Rand.
Params.

θ

Params. Update

PHY Info.

 Examples

Training
Examples

Training
Examples

 Packets

Init.

Data Preamble
Detection

SER

Full TrainingFull Training

θk-1

PHY Info.

Seq.
with label

Seq.
with label

PHY Info.
Seq.

Model
Params. θ

Model
Params. θ

AdaComm TxAdaComm Tx

Decoding Work Flow

Fine-Tuning Work Flow

Full-Training Work Flow

Decoding Work Flow

Fine-Tuning Work Flow

Full-Training Work Flow

θ*

θk

Segments

SER > Th Request for Training Seq.
Yes

R
eq

. f
ro

m
 R

x

Training
 Seq.

Fig. 3: The framework of AdaComm.

introduce the low-frequency noise into CSI [24], as shown
in Fig. 2. In the noise channel, both the variance and peak-
to-peak (maximum - minimum) of symbol 0 are larger than
those of symbol 1, confusing the decoding model and causing
decoding errors.

Actually, RSSI-based CTC such as WiZig also suffers
from dynamic environments because the RSSI fluctuation
will confuse the decoder that distinguishes symbols through
the threshold of RSSI. Even though RSSI is less sensitive
than CSI, it can still be influenced by both small-scale and
large-scale channel dynamics. The small-scale dynamics are
usually caused by multipath fading. The large-scale dynamics
are usually caused by path loss via distance attenuation and
shadowing effect by moving obstacles. When the wireless
channel dynamics cause RSSI fluctuations, the number of
decoding errors of RSSI-based CTC can significantly increase.

From the analysis and results, we can find that channel
dynamics lead to not only the mismatch between features (e.g.,
CSI variation and RSSI amplitude) and the decoding mod-
els, but also invalidation of predetermined features. Existing
feature-based methods cannot track and adapt to the real-time
channel state with predetermined features and thus experience
significant performance degradation.

IV. DESIGN OF ADACOMM

AdaComm is a general platform for packet-level CTC. We
propose an online learning mechanism to update the decoding
model incrementally using online dataset, thus coping with
the feature distortions. Meanwhile, we introduce a lightweight
decoding model to automatically learn effective features from
the raw data that are embedded with the information of current
channel state.

A. System Overview

Fig. 3 shows the architecture of AdaComm. AdaComm
consists of two major parts: CTC decoding and online learn-
ing. The online learning can be further divided into two
components: fine tuning and full training. In CTC decoding
component, the data preamble detection module first detects
the existence of modulated CTC symbols and passes the modu-
lated channel state sequences to the segmentation module. The
segments are then decoded by our decoding model (Section
IV-B). The demodulated bits will be checked by be Cyclic
Redundancy Check (CRC). The packets that pass CRC check
will be delivered to CTC link layer.

Instead of training a feature-based model from an offline
training dataset, we propose an online learning mechanism
to update the model incrementally using the online dataset,
thus helping the model acclimate to dynamic environments.
Fine-Tuning (Section IV-C) and Full-Training (Section IV-D)
are two updating modes to cope with the gradual and abrupt
channel dynamics respectively. By leveraging the correctly
decoded CTC packets that pass the CRC, AdaComm can
continuously obtain the labeled CTC symbol data and learn
the current channel state. Then AdaComm utilizes fine tuning
mechanism to update the parameters of our decoding model
to adjust to the channel. However, a channel state can change
significantly and cause serious performance degradation. We
propose the full training mechanism to recover from the failed
model. In full training mode, the AdaComm receiver will
actively send the request of the bursty training sequences to
the AdaComm sender. Then the sender broadcasts the training
sequences. Note that when channel state significantly changes,
the data preamble detection method may also fail detecting
CTC preambles due to the invalid decoding model. Hence,
we propose a dedicated preamble for training sequences. To
reduce the interrupt time of CTC, we propose a novel data
augmentation method to obtain sufficient training data with a
limited size of training sequences.

B. Decoding Model

As discussed in motivation (Section III), the channel dy-
namics can cause the distortion of the features as well as
the invalid features. The reason is that even though the raw
data actually contain rich channel information, the extraction
of manually defined features loses the information of channel
state. Hence, a natural requirement comes to our mind: Can we
extract effective features for decoding model automatically?
A popular technique, neural network, is promising to meet
the requirement because neural networks have the ability of

Convolution
1-max pooling

on each feature map

Full connection
& Softmax

CSI frame or RSSI frame
feature maps

feature vector with
fixed length

Prob. distribution
over symbol 0 and 1

Filter size
(H1 x D)

Multiple feature
maps for each filter

Filter size
(H2 x D)

Fig. 4: Structure of our decoding model.

automatically learning the features from raw data without any
prior domain knowledge. Therefore, we explore the neural
networks to automatically learn the features that embed the
channel dynamic information.

However, it is non-trivial to directly apply neural network
techniques on CTC. Existing packet-level CTC techniques
usually impact the transmissions from other technologies
to convey data. For example, in ZigFi, the ZigBee CTC
transmitter impacts the CSI on the WiFi receiver. But the
original transmissions are not strictly periodic due to the use
of CSMA/CD. Namely, the number of CSI samples is not
constant in each CTC symbol window which is called a CSI
frame. But traditional neural networks usually require fixed-
dimension input and cannot directly process the CSI frame
with a varying length. Simply interpolating or shrinking the
CSI frames to a fixed size is infeasible because each CSI
sample is independent, and directly interpolating samples may
distort the channel information that we want to reserve.

To make full use of channel information embedded in the
raw CSI frame, we propose a decoding model modified from
Text-CNN [25]. Text-CNN is originally designed for short
text classification in natural language processing and is able
to deal with the varying-size inputs without interpolation.
The architecture of our decoding model is shown in Fig.
4. Let xi,j ∈ RD denotes j-th sample in i-th CSI frame
(xi ∈ RN×D), where N is the frame length and D is the
number of overlapping subcarriers between WiFi channel and
ZigBee channel (When this model is used to process RSSI,
D is set to 1). We apply convolution filters w ∈ RH×D on
samples with a sliding window of H to obtain new features.
We set the step size of the sliding window on CSI frame as
1 and then each filter w will produce a new feature vector
with length N −H + 1. Then, 1-max pooling is applied over
each feature vector to capture the most important feature. This
pooling scheme naturally deals with variable CSI frame length,
because it converts variable feature length (N−H+1) to fixed
length 1. Finally, this fixed length layer will pass through full
connection and softmax layers to classify symbols.

C. Fine Tuning

Existing CTC methods reactively adjust behaviors only
when PER significantly increases. They fail to adjust in time

to obtain the optimal CTC performance in dynamic channel
environments. Hence, to tackle the gradual channel dynamics,
AdaComm integrates the fine tuning mode that reuses the
correctly decoded data to update the decoding model.

1) Passive Data Collection: Suppose we collect n con-
secutive frames x0, x1, ..., xn−1. The CTC data decoding
model classifies the frames as n symbols b0, b1, ..., bn−1.
If these n symbols pass CRC, we obtain the new la-
beled data and append them to the passive dataset Dp, i.g.,
Dp = Dp

⋃
{(x0, b0), (x1, b1), ..., (xn−1, bn−1)}. Note that,

the whole process of collecting Dp is non-intrusive. No extra
cost of data collection is introduced. We can continuously
accumulate the labeled data as long as there are new frames
decoded correctly.

2) Parameters Update: After obtaining the labeled data,
we can update the model parameters. Generally speaking, the
training processes of the decoding model can be converted into
solving the following optimization problem.

min
θ∈Rn

E(x,y)∼D[Jθ(x, y)] (1)

where x is CSI frame and y is its label (e.g. symbol 0 or 1).
J is a loss function. There are many optimization methods
that could be expressed as rules for updating its parameters
θ. For example, the iteration of Stochastic Gradient Descent
(SGD) [26], a simple yet practical optimization method, can
be described as

θk = θk−1 − αE
[
∇θk−1

J(x, y)
]
, (x, y) ∼ Dk, (2)

where θk denotes the parameters of the decoding model in the
k-th iteration. α is the step size of updating. ∇θkJ denotes
the gradient with respect to θk, and Dk means k-th training
batch. The training batch is sampled from the passive dataset
Dp.

D. Full Training

When wireless channel changes abruptly, there will be sig-
nificant changes in underlying CSI features, which mismatch
with features that decoding model has already learned. Fine
tuning mode is disabled because the decoding model has
already failed and no more CTC frames decoded correctly is
available for passive dataset Dp. To cope with abrupt channel
dynamics, we propose full training to quickly recover from
the model failure.

In the full training mode of AdaComm, the receiver can
detect the abrupt channel dynamic by monitoring the PER. If
PER suddenly increases, the receiver will decide there is an
abrupt change and initiate the full training mode. The receiver
first sends the request of special training sequences to the
sender. Once receiving the request, the sender will broadcast
the training sequence. After receiving the training sequence,
the receiver will train the decoding model from scratch to
adapt the new channel environment. Since the original de-
coding model is out of date, the data preamble component
may fail. Hence, we design a special training sequence with
barker code based preamble to enable the detection of training
sequence in a dynamic environment. We also propose a novel

CSI

Autocorrelation
cofficient

ZigBee

start of the packet

Variance
Binarization 1 1 1 -1 -1 -1 -1 -1 -11 11 1 1 -1 -1 -1 -1 -1 -11 11 1 1 -1 -1 -1 -1 -1 -11 1

pT

Preamble

Fig. 5: Detection of the barker code based preamble.

data augmentation method to cut the cost of data collection,
shortening the interruption time.

1) Active Data Collection: The training data for full train-
ing is collected from our training sequences. We construct the
training sequence with a predefined pattern to help the receiver
extract labeled data. Besides the preamble introduced in the
next subsection, the training sequence consists of continuous
symbol 1s followed by continuous symbol 0s. The periods
for continuous symbol 1 and 0 are both Tg . Then we use
the symbol window length Ts to segment the sequence to
obtain symbol frames {xj}. The label yj of each frame can
be inferred from the fixed structure of the training sequence.
Then we have the online active dataset Da = {(xj , yj)}.

2) Training Sequence Preamble Detection: Inaccurate de-
coding model may lead to inaccurate synchronization which
will cause offsets when segmenting the labeled symbol frames,
thus introducing extra noise to training dataset Da. Hence, we
need a more distinctive preamble to help the receiver reliably
detect and locate the training sequence.

AdaComm leverages the property of barker code to design
the preamble of training sequence for detection and synchro-
nization. Barker code is the subset of PN sequences, and its
key property is the ideal autocorrelation. Consider a barker
code with length N, for all 1 ≤ v < N , the autocor-

relation coefficient can be expressed as cv =
N−v∑
j=1

bjbj+v ,

where bj is an individual barker code taking value be-
tween +1 and −1, for 1 ≤ j ≤ N . The autocorrela-
tion coefficient cv will reach its peak value when v =
0. In AdaComm, we adopt a 11-chip barker code, which
is {+1,+1,+1,−1,−1,−1,+1,−1,−1,+1,−1}. We attach
the preamble at both the head and the tail of the training
sequence to improve the reliability.

On the receiver side, we continuously collect CSI samples
and monitor the arrival of preambles. The detection process
is shown in Fig. 5. We first convert the raw CSI into +1 or
−1. We leverage the variance of CSI to decide the segment
should be +1 or −1 according to a decision threshold, Th.
If the variance of CSI in a window is larger than Th, the
window is regarded as +1. Otherwise, the window is −1. We
then calculate the autocorrelation coefficient cv using these 11
outputs. If the peak of cv exceeds a threshold, we assert there
is an arrival of the preamble and the index of the corresponding
CSI sample is the start of the training sequence. Even though

we simply use the variance of CSI for binarization, our method
is robust to detect the training preamble for two reasons. First,
the symbol window length Tp for preamble is twice as long as
the data symbol Ts, providing much more redundancy. Second,
the barker code with 11 chips has a fault-tolerant capability.
The robustness of our training sequence preamble detection is
evaluated in Section V-E.

3) Data Augmentation: It is known that more examples
are fed to the model, more accurate the model tends to be.
However, in CTC communication, the cost of actively col-
lecting sufficient labeled data is unacceptable. First, the active
collection impedes the normal CTC, leading to interruption
in CTC service. Long-period collection can cause too long
service interruption time. Second, the energy cost of ZigBee
nodes during active data collection can be high because the
radio has to keep active for a long period. To quickly obtain
sufficient training data at low cost is crucial for the full
training.

To tackle the dilemma, we devise a novel data augmentation
method to generate emulated training data from the collected
data. The basic principle of data augmentation is that semantic
information of original data is still preserved after augmenta-
tion. So we can directly label the new generated data with the
label of the original data.

We design our CSI data augmentation based on the obser-
vation that impacted CSI samples are randomly distributed.
In fact, the impacts of ZigBee transmissions on CSI samples
rely on the collisions between ZigBee packets and the WiFi
preamble. Due to the asynchronous transmissions of ZigBee
and WiFi packets, even though the impacts exist, the positions
of impacted CSI samples are uncertain. Hence, using the
collected CSI samples as the seeds for generation, random
permutation can create much more labeled data while still
maintaining channel information, including both the impacts
of ZigBee transmissions and the channel dynamics.

Suppose the online dataset we actively collect is Da =
{(xi, yi)}, where (xi, yi) is a pair of a CSI frame and the
corresponding label yi (symbol 0 or symbol 1). For each pair
xi, yi in Da, we perform random permutation on xi and get a
new frame xi′. The only difference between xi and xi′ is the
order of CSI samples, while the major semantic information of
xi reserves. So the pair (xi′, yi) can be used as a new training
example.

The full training module exploits the same optimization
method as fine tuning but with the larger step size α and of
course different training datasets. After random initialization
of θ, we feed new generated examples to the model batch
by batch until the desired accuracy is achieved or timeout. To
speed up training process, we improve generalization of model
by discarding the generated examples that have already been
fed to the model before.

E. Generality of AdaComm

AdaComm is a general CTC framework that leverages
online learning to adapt to the channel dynamics and obtains
the reliable performance in dynamic environments. Although

we use ZigFi, a CSI-based CTC, as the example to present
our design details, we also apply AdaComm to RSSI-based
CTC, WiZig [6] in our implementation. The main difference
is using raw RSSI samples as input of decoding model. The
CTC techniques with RSSI as information carrier leverage
the threshold to decode symbols, which can be regarded
as feature-based decoding model as well. They also have
the problem of performance degradation due to small-scale
fading and large-scale fading in dynamic wireless channel. Our
evaluation shows that applying AdaComm to both CSI-based
CTC and RSSI-based CTC indeed brings benefits to reliable
performance.

V. EVALUATION

In this section, we extensively evaluate AdaComm in vari-
ous scenarios. We first introduce the experiment setting, and
then present the performance and cost of AdaComm, compared
with ZigFi (a CSI-based CTC from ZigBee to WiFi) and
WiZig (a RSSI-based CTC from WiFi to ZigBee).

A. Experiment Setup

We implement ZigFi, WiZig, CSI-based and RSSI-based
AdaComm to study the performance improvement of Ada-
Comm. For ZigFi and CSI-based AdaComm , two computers
with Intel 5300 NICs act as WiFi sender and WiFi receiver
to build the WiFi link. We use CSITool [27] to collect the
CSI samples with an average sampling frequency of 2KHz.
We implement the ZigBee sender on TelosB, a commercial
ZigBee platform. The CTC symbol length Ts is set to 4ms,
the default setting in ZigFi. For WiZig and RSSI-based Ada-
Comm, an USRP/N210 device acts as the CTC transmitter
and a TelosB node acts as CTC receiver. The sampling
frequency of RSSI is 1KHz. Unless otherwise specified, the
communication channel of WiFi and ZigBee is set to channel
11 and channel 23 respectively to overlap in the frequency
domain. To generate controllable channel dynamics, we also
use another USRP/N210 to simulate Additive White Gaussian
Noise (AWGN). Due to the limited space, in the following,
we mainly present the comparison results of ZigFi and CSI-
based AdaComm because the comparisons between WiZig and
RSSI-based AdaComm show similar performance trends and
conclusion.

B. Performance Comparison under Different Settings

We first evaluate AdaComm under various settings, in-
cluding the intensity of dynamics, transmission distance, and
transmission power. We implement the default ZigFi that
uses a pre-trained decoding model. We also implement an
improved version of ZigFi with online learning mechanism.
The performance metrics are throughput and SER.

1) Impacts of Environment Dynamics: We first evaluate
AdaComm in different environments. We intentionally control
the environment to construct the dynamics with different inten-
sities. We have four scenarios: (1) relative static environment
with no human and device movement; (2) a person keeps
walking around; (3) the WiFi Tx keeps moving; (4) the WiFi

Static Move Tx Static Move Rx Walk Static

Fig. 6: SER in dynamic environments.

Rx keeps moving. The impacts on the decoding model of
these four scenarios are expected to be more and more serious
because the moving Rx directly impacts the received signals.
We construct an environment varying sequence, as shown in
the Fig. 6. Each scenario lasts for 5 minutes. Then we record
the SER of AdaComm, default ZigFi, and improved ZigFi
during the experiments.

Fig. 6 shows the SER of three methods during the varying
environments. In the static environments, all three methods
can achieve the SER lower than 0.1. However, when we move
the WiFi Tx or ask a person to walk around, the SER of
default ZigFi increases sharply, while AdaComm can quick
adapt to this abrupt change with the help of online learning.
Also benefiting from online learning, improved ZigFi achieves
a relatively low SER. However, its SER increases from the
8 minutes because predefined features suffer from distortion,
while AdaComm can keep the statable and low SER.

When we move the WiFi Rx, the channel experiences severe
dynamics, the SER of default ZigFi sharply increases to more
than 0.25. Even though we retrain the decoding model in
improved ZigFi, the SER only keeps low for a very short
time (less than 30s) and then increases to a very high level.
This is because the fast changing environment can cause the
failure of the retrained model. We can see that AdaComm
maintains a quite low SER for all the time. The average
SERs of AdaComm in four scenarios are 0.051, 0.066, 0.049,
and 0.076 respectively. The SER variation is very limited.
The results demonstrate that with online learning, AdaComm
can deal with the sudden and gradual channel dynamics and
achieve the reliable CTC with a quite low and stable SER.

2) Impacts of Distance: The distance between the ZigBee
sender and the WiFi receiver affects the ZigBee’s signal
strength as well as the CSI variations at the receiver. We vary
the distance from 0.5m to 10 meters to investigate the impacts
of distance on the performance of AdaComm and ZigFi. The
distance of the WiFi receiver and WiFi sender is fixed at 3m.
The transmission power of ZigBee is set as level 16 (-6 dBm).

Fig. 7(a) and 7(b) present SER and throughput, respectively.
As expected, both AdaComm and ZigFi have performance
degradation with the increase of distance. When distance is
6m, the SER of ZigFi is 0.317, exceeding the required SER,
0.1. The SER of AdaComm is 0.086 which is 72.9% smaller

0.5 1 2 4 6 8 10
Distance (m)

10 3

10 2

10 1

100

SE
R

AdaComm
ZigFi

(a) SER

0.5 1 2 4 6 8 10
Distance (m)

0

100

200

Th
ro

ug
hp

ut
 (b

ps
)

AdaComm
ZigFi

(b) Throughput

Fig. 7: SER and throughput vs. distance.

1 4 7 10 13 16 19 22 25 28 31
Transmision power (level)

10 3

10 2

10 1

100

SE
R

AdaComm
ZigFi

(a) SER

1 4 7 10 13 16 19 22 25 28 31
Transmision power (level)

0

100

200

Th
ro

ug
hp

ut
 (b

ps
)

AdaComm
ZigFi

(b) Throughput

Fig. 8: SER and throughput vs. transmission power.

than ZigFi. The corresponding throughput of AdaComm and
ZigFi are 229 bps and 171 bps respectively. The reason that
AdaComm outperforms ZigFi is that channel fading due to
long distance can also cause the insatiability of features,
which can be regarded as a kind of channel dynamics. The
automatically learned features in AdaComm can distinguish
symbols better than the predetermined features in ZigFi de-
coding model.

3) Impacts of Transmission Power: Besides distance, the
transmission power of ZigBee also impacts the signal strength
at the WiFi receiver. We vary the transmission power of
ZigBee from power level 1 (-24dBm) to level 31 (0dBm),
to study the performance of AdaComm and ZigFi. Both the
distance between the ZigBee sender and the WiFi receiver and
the distance between the WiFi sender and receiver are 3m.

Fig. 8 presents the results. We observe the similar results,
compared with the results when varying distance. When in-
creasing the transmission power, the received signal strength
becomes stronger and the features become more distinctive.
Hence, the SER decreases and the throughput increases. But
the performance gap between AdaComm and ZigFi still exists
due to the online learning based adaption in AdaComm.

C. Communication Interrupt Time

In dynamic channel environments, CTC can encounter com-
munication interrupt when the CTC cannot provide the com-
munication service with the desired SER. To provide reliable
service in practice, the communication interrupt time should
be as short as possible. In our online updating framework,
the total communication interrupt time TI consists three major
parts: the data collection time Tcollect, the training time Ttrain,
and the model failure time Tfailure. During model failure time,
CTC may continue the CTC transmission but the achieved
SER is higher than the required SER.

Walk Noise Noise+Walk0

60

120

180

240

300
In

te
rr

up
t t

im
e

(s
) AdaComm

Improved ZigFi
Default ZigFi

(a) Interrupt time

Walk Noise Noise+Walk0

50

100

150

200

250

C
ol

le
ct

io
n

tim
e

 (s
) AdaComm

Improved ZigFi

(b) Collection time

Walk Noise Noise+Walk0

10

20

30

40

Tr
ai

ni
ng

 ti
m

e
 (s

) AdaComm
Improved ZigFi

(c) Training time

Walk Noise Noise+Walk0

60

120

180

240

300

Fa
ul

t t
im

e
 (s

)

AdaComm
Improved ZigFi
Default ZigFi

(d) Fault time

Fig. 9: Communication interrupt time in different dynamic environments.

0.01 0.05 0.1 0.2 0.4 0.6 0.8 1.0
Ratio of training dataset

0.5

0.6

0.7

0.8

0.9

1.0

D
ec

od
in

g
ac

cu
ra

cy

W/ augmentation
W/O augmentation

Fig. 10: Decoding accuracy of
models trained on different ratios

of dataset.

4ms 6ms 8ms 10ms 20ms
Time window length Tp

0.0

0.2

0.4

0.6

0.8

1.0
D

et
ec

tio
n

ac
cu

ra
cy

0

1

2

3

Fa
ls

e
al

ar
m

 ra
tio

 (%
)

 Accuracy
False alarm

Fig. 11: Detection accuracy and
false alarm ratio of preamble

detection.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

0.5

0.6

0.7

0.8

0.9

1.0

D
ec

od
in

g
A

cc
ur

ac
y

RSSI-based model
CSI-based model

Fig. 12: Convergence time of
the RSSI-based and the

CSI-based decoding model.

0.5 1 2 4 6 8 10
Distance (m)

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

SE
R

RSSI-based AdaComm
WiZig

Fig. 13: Performance
improvement of RSSI-based

AdaComm.

We control the channel environment to form three scenarios:
(S1) a person keeps walking around the WiFi sender and
receiver to generate the low-frequency noise; (S2) A USRP
generates Gaussian noise with a high frequency; (S3) including
the noise both in S1 and S2. The experiment in each scenario
lasts for 5 minutes. We compare the interrupt time of default
ZigFi, improved ZigFi, and AdaComm.

Fig. 9 presents the total communication interrupt time
and the detailed compositions of the three CTC methods.
We can find that TI of improved ZigFi and AdaComm is
shorter than default ZigFi in the walking scenario and noise
scenario. This is because the online updating used in improved
ZigFi and AdaComm help to adjust the decoding model to
overcome the channel dynamics. But when the environment
is becoming complicated, simply updating the SVM param-
eters in improved ZigFi cannot handle and the performance
degrades. Due to the retraining of models, improved ZigFi and
AdaComm have additional data collection cost and training
cost, as shown in Fig. 9(b) and Fig. 9(c). Due to the data
augmentation, AdaComm can significantly reduce the data
collection cost, as shown in Fig. 9(b). But the training time of
AdaComm is longer than improved ZigFi because the Text-
CNN has a more complex structure than SVM. Fig. 9(d)
shows the model failure time. One interesting observation
is that the model failure time of improved ZigFi is shorter
than AdaComm in S3. This is because SVM cannot deal with
the complicated channel dynamics and even retraining cannot
provide satisfied SER. Hence, the most time is spent on data
collection, as shown in Fig. 9(b).

D. Cost Reduction of Data Augmentation

Next, we evaluate the contribution of data augmentation to
reducing data collection cost. We continuously collect CSI
samples for 60 seconds. The first 30s data form the complete

training set and the last 30s data form the testing set. Then we
vary the size of training set by controlling the ratio of used
data in the complete training set. We vary the ratio from 1% to
100%. We use the same testing set to test the accuracy of our
decoding model. The results are shown in Fig. 10. Our data
augmentation can significantly reduce the size of needed data,
to achieve the similar accuracy. Without data augmentation,
achieving the accuracy of 0.9 needs more than 6s. With the
help of data augmentation, AdaComm only needs 5% of the
complete 30s training set which takes 1.5s to collect data.

E. Accuracy of Preamble Detection

Barker code based preamble is used for training sequence
detection and synchronization. The detection accuracy is
highly related to the preamble symbol window length Tp.
Hence, we vary Tp and study the performance of our preamble
detection. We measure two metrics: the accuracy of preamble
detection and false alarm ratio. The results are shown in Fig.
11. As expected, when we increase Tp, the accuracy increases
and false alarm ratio decreases because the binarization be-
comes more robust. When Tp = 8ms, the accuracy is 0.932
and false alarm ratio is just 0.42%. Hence, we set Tp to 8ms
in our current implementation.

F. Convergence Time of Model Training

We investigate the convergence time of our model during
full training. We run the training algorithm on CPU of a
common WiFi PC receiver (Intel Core i5 @ 2.3GHz). Fig.
12 shows the accuracy of the RSSI-based and the CSI-based
model changing over time. The accuracy of the CSI-based
model reaches 0.9 within 0.2s and the training converges after
0.4s. The accuracy of the RSSI-based model reaches 0.93
within 0.075s and the training converges after 0.1s.

The fast convergence rate is because our decoding model
adopts a lightweight neural network structure. Different from

deep neural networks with millions of trainable parameters,
our decoding model is quite lightweight. The number of
parameters of decoding model is just 9794 (38.3KB) and
1346 (5.3KB) for CSI-based and RSSI-based AdaComm,
respectively. The overhead is affordable for even low-power
devices.

G. Performance Improvement for RSSI-based CTC

Due to large-scale fading, RSSI will also fluctuate when the
distance between WiFi and ZigBee varies. Existing threshold-
based decoding method is expected to have performance
degradation when RSSI fluctuates. We vary the distance be-
tween the WiFi CTC sender and the ZigBee CTC receiver from
0.5m to 10 meters to investigate the impacts of distance on
the performance of AdaComm and WiZig. The transmission
power gain is fixed to 0 dB. Fig. 13 presents the results.
As expected, when the distance increases, the SERs of both
methods increase because of path loss. When distance is 2m,
the SER of AdaComm is 0.061 which is 49.2% smaller than
WiZig. Compared with the results of CSI-based AdaComm,
we can find that even though AdaComm can improve the
CTC performance for both CSI-based and RSSI-based CTC
approaches, AdaComm has more significant performance im-
provement for CSI-based CTC. This is because CSI is more
sensitive to the channel dynamics and the decoding features
of existing predetermined decoding models are thus easily
corrupted.

VI. CONCLUSION

In this paper, we propose AdaComm, a general online learn-
ing CTC framework that maintains reliable performance in
dynamic channel environments. AdaComm can automatically
learn the effective features directly from the raw data that
contains the information of current channel state. AdaComm
utilizes two online learning modes, fine tuning and full train-
ing, to cope with the continuous and abrupt channel dynamics,
respectively. In fine tuning, AdaComm keeps updating the
receiver’s decoding model by the correctly decoded CTC
data. To quickly recover from the model failure caused by
significant channel changes, we also propose the full training
mode with data augmentation to obtain the new decoding
model with only a limited overhead. We implement AdaComm
and evaluate its performance in various environments. The
experimental results show that AdaComm can reduce the SER
by up to 72.9% and 49.2% for the CSI-based and the RSSI-
based CTC respectively.

ACKNOWLEDGMENT

This work was supported by National Key R&D Program
of China No.2017YFB1003000, National Natural Science
Foundation of China No. 61772306, No.61672372 and No.
61672320.

REFERENCES

[1] Z. Li, M. Li, and Y. Liu, “Towards energy-fairness in asynchronous
duty-cycling sensor networks,” ACM Transactions on Sensor Networks,
vol. 10, no. 3, p. 38, 2014.

[2] X. Zheng, Z. Cao, J. Wang, Y. He, and Y. Liu, “Interference resilient
duty cycling for sensor networks under co-existing environments,” IEEE
Transactions on Communications, vol. 65, no. 7, pp. 2971–2984, 2017.

[3] X. Zheng, J. Wang, W. Dong, Y. He, and Y. Liu, “Bulk data dis-
semination in wireless sensor networks: analysis, implications and
improvement,” IEEE Transactions on Computers, vol. 65, no. 5, pp.
1428–1439, 2016.

[4] S. M. Kim and T. He, “Freebee: Cross-technology communication via
free side-channel,” in Proceedings of ACM MobiCom, 2015.

[5] K. Chebrolu and A. Dhekne, “Esense: communication through energy
sensing,” in Proceedings of ACM MobiCom, 2009.

[6] X. Guo, X. Zheng, and Y. He, “Wizig: Cross-technology energy com-
munication over a noisy channel,” in Proceedings of IEEE INFOCOM,
2017.

[7] X. Zheng, Y. He, and X. Guo, “Stripcomm: Interference-resilient cross-
technology communication in coexisting environments,” in Proceedings
of IEEE INFOCOM, 2018.

[8] X. Guo, Y. He, X. Zheng, L. Yu, and O. Gnawali, “Zigfi: Harnessing
channel state information for cross-technology communication,” in Pro-
ceedings of IEEE INFOCOM, 2018.

[9] S. Wang, S. M. Kim, and T. He, “Symbol-level cross-technology
communication via payload encoding,” in Proceedings of IEEE ICDCS,
2018.

[10] Z. Li and T. He, “Webee: Physical-layer cross-technology communica-
tion via emulation,” in Proceedings of ACM MobiCom, 2017.

[11] W. Jiang, R. Liu, L. Liu, Z. Li, and T. He, “Bluebee: 10,000 x
faster cross-technology communication from bluetooth to zigbee,” in
Proceedings of ACM MobiCom, 2017.

[12] X. Guo, Y. He, J. Zhang, and H. Jiang, “Wide: physical-level ctc via
digital emulation,” in Proceedings of ACM IPSN, 2019.

[13] W. Wang, T. Xie, X. Liu, and T. Zhu, “Ect: Exploiting cross-technology
concurrent transmission for reducing packet delivery delay in iot net-
works,” in Proceedings of IEEE INFOCOM, 2018.

[14] Z. Yin, Z. Li, S. M. Kim, and T. He, “Explicit channel coordination
via cross-technology communication,” in Proceedings of ACM MobiSys,
2018.

[15] Y. Zhang and Q. Li, “Howies: A holistic approach to zigbee assisted wifi
energy savings in mobile devices,” in Proceedings of IEEE INFOCOM,
2013.

[16] X. Zhang and K. G. Shin, “Gap sense: Lightweight coordination of
heterogeneous wireless devices,” in Proceedings of IEEE INFOCOM,
2013.

[17] Z. Chi, Y. Li, H. Sun, Y. Yao, Z. Lu, and T. Zhu, “B2w2: N-way
concurrent communication for iot devices,” in Proceedings of ACM
SenSys, 2016.

[18] Z. Yin, W. Jiang, S. M. Kim, and T. He, “C-morse: Cross-technology
communication with transparent morse coding,” in Proceedings of IEEE
INFOCOM, 2017.

[19] W. Jiang, Z. Yin, S. M. Kim, and T. He, “Transparent cross-technology
communication over data traffic,” in Proceedings of IEEE INFOCOM,
2017.

[20] W. Jiang, S. M. Kim, Z. Li, and T. He, “Achieving receiver-side
cross-technology communication with cross-decoding,” in Proceedings
of ACM MobiCom, 2018.

[21] Z. An, Q. Lin, and L. Yang, “Cross-frequency communication: Near-field
identification of uhf rfids with wifi!” in Proceedings of ACM MobiCom,
2018.

[22] Z. Yin, Z. Li, S. M. Kim, and T. He, “Explicit channel coordination
via cross-technology communication,” in Proceedings of ACM MobiSys,
2018.

[23] Z. Yu, C. Jiang, Y. He, X. Zheng, and X. Guo, “Crocs: Cross-technology
clock synchronization for wifi and zigbee.” in Proceedings of EWSN,
2018.

[24] L. Sun, S. Sen, D. Koutsonikolas, and K.-H. Kim, “Widraw: Enabling
hands-free drawing in the air on commodity wifi devices,” in Proceed-
ings of ACM MobiCom, 2015.

[25] Y. Kim, “Convolutional neural networks for sentence classification,” in
Proceedings of SIGDAT EMNLP, 2014.

[26] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of International Conference on Computational
Statistics, 2010.

[27] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release: Gathering
802.11n traces with channel state information,” ACM SIGCOMM CCR,
vol. 41, no. 1, 2011.

